EconPapers    
Economics at your fingertips  
 

Life cycle assessment of solar home system informal waste management practices in Malawi

Christopher Kinally, Fernando Antonanzas-Torres, Frank Podd and Alejandro Gallego-Schmid

Applied Energy, 2024, vol. 364, issue C, No S0306261924005737

Abstract: This study performs the first life cycle assessment of solar home systems (SHSs) to use data quantifying lead pollution from informal lead-acid battery recycling. The typical life cycle of SHSs in off-grid communities surrounding Malawi's capital of Lilongwe is assessed, considering affordable components imported from China, lead-acid battery lifetimes of one year, the collection of materials through the informal scrap market, the open dumping and burning of waste, and informal lead-acid battery recycling (remanufacturing). Lead-acid batteries are highlighted as the most damaging SHS component, occupying 54–99% of each impact category, caused by the burdens of lead mining and the high assembly energy of batteries, amplified by short battery lifetimes – subject to detrimental user practices. The amount of electricity delivered to users is significantly restricted by the low efficiency of affordable SHS components. Meanwhile, the informal remanufacturing of a single lead-acid battery is recorded to release over 100 times the lethal oral dose of lead for an adult into densely populated communities, resulting in a terrestrial ecotoxicity potential of 200–386 kg 1,4-DCB eq. per kWh delivered. Proposed formal recycling solutions are found to successfully mitigate the toxicity of informal waste management but incur significant burdens: substituting toxic but resource-efficient informal remanufacture with safe but energy-intensive formal battery production. Furthermore, the short one-year lifetimes of lead-acid batteries can cause the environmental impacts of SHS to exceed the impacts of diesel generators in most impact categories, resulting in a global warming potential of up to 1.4 kg CO2/kWh. Hence, both extended battery lifetimes of three years and formal recycling are found to be necessary for SHSs to be considered as a safe and low-carbon technology – requiring holistic interventions.

Keywords: Off-grid solar; Life cycle assessment (LCA); E-waste; Informal recycling; Lead-acid batteries; Sub-Saharan Africa (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005737

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123190

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005737