Life cycle assessment of solar home system informal waste management practices in Malawi
Christopher Kinally,
Fernando Antonanzas-Torres,
Frank Podd and
Alejandro Gallego-Schmid
Applied Energy, 2024, vol. 364, issue C, No S0306261924005737
Abstract:
This study performs the first life cycle assessment of solar home systems (SHSs) to use data quantifying lead pollution from informal lead-acid battery recycling. The typical life cycle of SHSs in off-grid communities surrounding Malawi's capital of Lilongwe is assessed, considering affordable components imported from China, lead-acid battery lifetimes of one year, the collection of materials through the informal scrap market, the open dumping and burning of waste, and informal lead-acid battery recycling (remanufacturing). Lead-acid batteries are highlighted as the most damaging SHS component, occupying 54–99% of each impact category, caused by the burdens of lead mining and the high assembly energy of batteries, amplified by short battery lifetimes – subject to detrimental user practices. The amount of electricity delivered to users is significantly restricted by the low efficiency of affordable SHS components. Meanwhile, the informal remanufacturing of a single lead-acid battery is recorded to release over 100 times the lethal oral dose of lead for an adult into densely populated communities, resulting in a terrestrial ecotoxicity potential of 200–386 kg 1,4-DCB eq. per kWh delivered. Proposed formal recycling solutions are found to successfully mitigate the toxicity of informal waste management but incur significant burdens: substituting toxic but resource-efficient informal remanufacture with safe but energy-intensive formal battery production. Furthermore, the short one-year lifetimes of lead-acid batteries can cause the environmental impacts of SHS to exceed the impacts of diesel generators in most impact categories, resulting in a global warming potential of up to 1.4 kg CO2/kWh. Hence, both extended battery lifetimes of three years and formal recycling are found to be necessary for SHSs to be considered as a safe and low-carbon technology – requiring holistic interventions.
Keywords: Off-grid solar; Life cycle assessment (LCA); E-waste; Informal recycling; Lead-acid batteries; Sub-Saharan Africa (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005737
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005737
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123190
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().