EconPapers    
Economics at your fingertips  
 

Synergistic treatment of sewage sludge and food waste digestate residues for efficient energy recovery and biochar preparation by hydrothermal pretreatment, anaerobic digestion, and pyrolysis

Chunxing Li, Yu Wang, Shengyu Xie, Ruming Wang, Hu Sheng, Hongmin Yang and Zengwei Yuan

Applied Energy, 2024, vol. 364, issue C, No S0306261924005865

Abstract: The safe disposal of sewage sludge (SS) and food waste digestate residues (DR) is a tough issue considering the difficulty of dewatering and the environmental risks from heavy metals and pathogens. This study combined hydrothermal pretreatment (HP), anaerobic digestion (AD), and pyrolysis to synergistically dispose of SS and DR to enhance dewaterability, recover energy, and prepare biochar with heavy metal immobilization. The results showed that the solid contents of centrifuged cakes increased after HP at 180 °C of SS with the addition of 25% and 50% mass fractions of DR. The centrate from co-HP had a high chemical oxygen demand (COD) and was further treated by AD at 37 °C, producing 193.75 and 210.39 mL/g CODinput (25 °C and 1 atm) of cumulative CH4 under the addition of 50% and 75% mass fractions of DR, respectively. The methanogenic types in AD converted from hydrogen utilization to acetic acid utilization with increasing DR ratio. Zn, Cu, Ni, and Pb were primarily left in the biochar after 50% mass fraction of DR was mixed in the HP combined with pyrolysis at 700 °C; the chemical fractionation of Zn, Cu, Cr, and Pb in the biochar increased to over 85% of the residual fractions, resulting in the lowest potential ecological risk index (15.22, low risk). The CH4 produced from the AD of the co-HP centrate (50: 50, w/w) can supply heat for the HP process, reducing the energy input by 89%. This co-disposal strategy can effectively recover carbon resources from solid wastes to reduce carbon emissions.

Keywords: Dewaterability; Methane; Biochar; Heavy metals; Element flow (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005865
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005865

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123203

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005865