Water management and mass transport of a fractal metal foam flow-field based polymer electrolyte fuel cell using operando neutron imaging
Y. Wu,
L. Xu,
S. Zhou,
J. Yang,
W. Kockelmann,
Y. Han,
Q. Li,
W. Chen,
M.-O. Coppens,
P.R. Shearing,
D.J.L. Brett and
R. Jervis
Applied Energy, 2024, vol. 364, issue C, No S0306261924005877
Abstract:
Metal foam flow-fields (MFFs) exhibit immense potential for enhancing the performance of polymer electrolyte fuel cells (PEFCs) owing to their advantageous pore connectivity and abundant gas pathways. Nevertheless, challenges remain with the conventional MFF concerning reactant homogeneity and water management. To address these concerns, this study incorporates a fractal manifold into the MFF design. By employing operando neutron imaging, device-level testing, and electrochemical impedance spectroscopy (EIS), a comprehensive understanding of mass transfer and water management characteristics across the fractal manifold MFF is obtained. This novel design delivers better cell performance and lower mass transport resistance compared to the conventional MFF under all experimental conditions investigated. Notably, neutron imaging reveals that the fractal manifold MFF consistently exhibits a reduced liquid water content and more uniformly distributed liquid water compared to the conventional MFF. These superior characteristics of the design contribute to a substantial ∼15% increase in maximum power density compared to the conventional MFF-based PEFC. The results indicate the potential for further performance improvement by optimizing manifold parameters.
Keywords: Polymer electrolyte fuel cells; Metal foam flow-field; Mass transfer; Water management; Neutron imaging (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005877
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005877
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123204
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().