An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles
Zhiliang Huang,
Huaixing Wang,
Zhouwang Gan,
Tongguang Yang,
Cong Yuan,
Bing Lei,
Jie Chen and
Shengben Wu
Applied Energy, 2024, vol. 365, issue C, No S0306261924006020
Abstract:
Conventional lithium-ion cell state analysis methods face challenges in applicability, efficiency, and convergence for online state evaluation of cells with silicon‑carbon electrodes. This paper proposes a mechanical/thermal analytical model for prismatic cells with silicon‑carbon electrodes to evaluate cell stress and electrode deformation during charging/discharging. A dual-layer mechanical sub-model is proposed to obtain the electrode deformations under the volumetric loads of the SOC-dependent and thermal expansions. A viscoelastic constitutive model for electrode materials is developed to capture the mechanical hysteresis effects in a constrained space. A thermal circuit sub-model is created to assess the cell temperature distribution, providing boundary conditions for calculating electrode thermal expansion. The analytical model contains a small number of input parameters and first-order differential equations. The results cover the temperature, stress, elastic and viscoelastic deformations of the electrodes. The performance of the proposed approach was validated through numerical and experimental results on two commercial cells during constant current and abrupt current cycles. The second-level efficiency, robust convergence, and refined results exhibit an excellent prospect in energy storage and vehicle power applications.
Keywords: Lithium-ion battery; Silicon‑carbon electrode; Electrode expansion; Analytical model; Charge/discharge cycle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006020
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123219
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().