Variable horizon multivariate driving pattern recognition framework based on vehicle-road two-dimensional information for electric vehicle
Huimin Liu,
Cheng Lin,
Xiao Yu,
Zhenyi Tao and
Jiaqi Xu
Applied Energy, 2024, vol. 365, issue C, No S0306261924006470
Abstract:
Driving condition is the core factor influencing vehicle energy management and power output strategies, hence realistic and accurate driving pattern recognition is crucial for realizing intelligent control of Electric Vehicles in complex scenarios. However, driving patterns mismatch with real scenarios caused by lack of road environment information and the reduced global recognition accuracy triggered by the fixed recognition horizon together constrain the development of intelligent control strategies. In this study, a framework for variable horizon multivariate driving pattern recognition strategy based on vehicle-road two-dimensional (2D) information is proposed. Specifically, multivariate driving pattern extraction is carried out based on real vehicle-road 2D data, and the extraction data serves as input for training offline driving pattern recognizer. To meet the challenge of large differences and frequent changes in driving conditions during the online application, a variable horizon recognition strategy is proposed based on the optimal horizon matching regularity. Finally, test results show that the proposed approach achieves an average recognition accuracy of 88.42% under different cycles, including 88.39% for complex driving cycles. Furthermore, the recognition accuracy is improved by 63.14% and 47.51% compared with the fixed long/short horizon. The framework can provide a basis for intelligent control strategies, thus broadening the Electric Vehicle application scenarios.
Keywords: Electric vehicle; Complex scenario application; Driving pattern recognition; Multivariate patterns extraction; Variable horizon strategy; Intelligent control strategies (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006470
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006470
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123264
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().