EconPapers    
Economics at your fingertips  
 

Real-time monitoring and optimization of a large-scale heat pump prone to fouling - towards a digital twin framework

José Joaquín Aguilera, Wiebke Meesenburg, Wiebke Brix Markussen, Benjamin Zühlsdorf and Brian Elmegaard

Applied Energy, 2024, vol. 365, issue C, No S0306261924006573

Abstract: Large-scale heat pumps are a promising technology for the decarbonisation of heat supplied in buildings and industries, provided they operate as expected. However, common faults like fouling and unplanned downtime periods can significantly affect their performance and availability. This could limit the widespread adoption of large-scale heat pumps over other heating technologies such as gas and electric boilers. Approaches described in the literature to optimize the operation of large-scale heat pumps often lack validation under real-world conditions and do not account for performance degradation due to faults. This work demonstrates a step towards utilizing digital twins to improve the energy performance of a commercial large-scale heat pump affected by fouling. A framework was proposed based on the real-time adaptation of digital twins, where a simulation model was calibrated online based on measurements from the heat pump in operation, which was then used for set point optimization. This enabled to determine optimal intermediate pressure set points in the heat pump operating under varying levels of fouling over time. The framework was tested on different periods of heat pump operation spread over ten calendar months. The results showed that the use of online calibration rather than a single calibration decreased performance estimation errors between 3 and 17 percentage points. Moreover, the set points determined by the online-calibrated model, along with a simpler polynomial model derived from it, showed improvements in the heat pump performance by up to 3%, depending on the level of fouling. The findings of this study demonstrated the potential to extend the proposed framework using digital twins to enhance the energy efficiency of large-scale heat pumps.

Keywords: Digital twin; Set point optimization; Performance degradation; Fault-tolerant control; Fault diagnosis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006573
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006573

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123274

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006573