Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction
Zhuoqun Xing,
Yiqun Pan,
Yiting Yang,
Xiaolei Yuan,
Yumin Liang and
Zhizhong Huang
Applied Energy, 2024, vol. 365, issue C, No S0306261924006597
Abstract:
Currently, building energy consumption prediction models are usually based on a large amount of historical operational data in high demands of building operating hours and monitoring systems. However, many buildings may lack operational data due to relatively limited monitoring systems, causing the failure to use data-driven methods to characterize the energy profile. In this context, transfer learning is a promising method to establish the knowledge transfer between many high-quality building operation datasets and a small amount of target building data, and to help predict energy consumption in the target building. This paper studies the possibility of employing transfer learning to achieve both short and long-term building energy consumption prediction. Firstly, a similarity analysis method, based on variable modal decomposition and dynamic time warping, is proposed for identifying the source buildings with the most similar energy features to the target building. Then, transfer learning for long-term prediction air-conditioning energy consumption is developed with weather parameters generated by the Morphing method as inputs. For the short-term single-step prediction, the proposed model CV-RMSE improves 81.3% (AEC) and 77.4% (EEC), respectively, compared to the prediction model that does not implement the transfer learning strategy and directly uses the target BEC data. As for the short-term multi-step prediction, the proposed model CV-RMSE improves 62.0% (AEC) and 65.5% (EEC), respectively. For the long-term prediction, the average CV-RMSE for the whole year is 6.62% and 11.15% for the proposed and directly target domain-based model, respectively. The proposed method explores the practicality of transfer learning in building energy forecasting, contributing to the use of existing building operation data for energy management at different timespan.
Keywords: Building energy consumption predictions; Transfer learning; Deep learning; Similarity analysis; Transformer model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006597
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123276
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().