EconPapers    
Economics at your fingertips  
 

Interfacial structuring of MnN and MnC bonds by defect engineering for high-performance Zn-Mn battery

Shengen Gong, Jiaxin Zhao, Kaisheng Sun, Xiaoteng Jia and Danming Chao

Applied Energy, 2024, vol. 365, issue C, No S0306261924006676

Abstract: Zinc‑manganese batteries (ZMBs), with their non-flammable aqueous electrolyte and lower electrode material costs, offer a safer and more economical solution to the problem of energy intermittency. However, current ZMBs still face significant challenges, such as the presence of low electrical conductivity and poor structural stability of the manganese-based cathode, as well as unclear mechanisms of structural changes during charge storage. Here, we present a strategy to construct MnO2 containing MnC and MnN bonds (PAMO) by defect engineering and interface bonding design. This strategy benefits from the fact that MnN and MnC bonds can stabilize the structure and promote the interfacial dynamics of MnO2, thus effectively mitigating manganese dissolution. Meanwhile, the oxygen defects generated by interfacial bonding increase the electrical conductivity of MnO2. In addition, in terms of morphology and structure, the leafy vein-like secondary compartmentalized structure formed by PAMO provides more reactive sites for the redox reaction of MnO2, accelerating charge transfer and ion diffusion. The experimental results show that compared with pure MnO2 (326.8 mAh g−1), the capacity of PAMO material is enhanced by 30.1% (426.6 mAh g−1), and the battery still has 85.4% residual capacity (144.2–123.1 mAh g−1) after 6000 cycles, and coulombic efficiency is always maintained above 99.5%. This heterostructure design strategy of C- and N-doped MnO2 provides high electronic conductivity while playing an important role in improving structural stability.

Keywords: MnO2; C- and N-doped; Interfacial structuring; Electrochemical deposition; Zn-Mn battery (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006676
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006676

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123284

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006676