EconPapers    
Economics at your fingertips  
 

Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective

Yang Yu, Qinghua Yu, RunSen Luo, Sheng Chen, Jiebo Yang and Fuwu Yan

Applied Energy, 2024, vol. 365, issue C, No S030626192400672X

Abstract: Balancing the performance and durability of Proton Exchange Membrane Fuel Cells (PEMFCs) is a significant challenge. Current data-driven technologies mainly focus on improving the accuracy of performance degradation prediction. However, these methods are often considered as black-box models, where the internal workings of the model are in an unknown state, making it challenging to explain the relationship of each feature with performance/durability. To address this challenge, a novel interpretable model for PEMFC performance degradation and polarization curve is proposed, incorporating feature selection interpretation and black-box model interpretation. The key innovation of this paper lies in transforming the black-box model into a dual interpretable transparent model both before and during the learning process. Additionally, the prediction and interpretation of PEMFC polarization curves are performed. The Boruta algorithm is employed to interpret the significance of each feature's impact on the model, filtering out key feature variables. Based on the Boruta-selected feature variables, the SHapley Additive exPlanations (SHAP) algorithm is used to calculate the marginal contribution of each numerical value to the predicted target. This provides an in-depth explanation of the internal workings of the model, analyzing how each predictive factor influences the model results. Through Boruta feature analysis, it is discovered that the cathode characteristics of PEMFC have a greater impact on performance degradation than anode characteristics. The SHAP algorithm interpretative analysis identifies the optimal flow rates corresponding to the best performance for the cathode hydrogen flow rate and anode oxygen flow rate as 0.090 to 0.13 NLPM and 0.39 to 0.50 NLPM, respectively. This indicates that the algorithmic framework has a certain physical meaning in explaining PEMFC performance degradation.

Keywords: Proton exchange membrane fuel cells; Performance degradation; Model interpretability; SHapley additive exPlanations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400672X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s030626192400672x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123289

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:365:y:2024:i:c:s030626192400672x