Behaviours of methane metabolism and community dynamics of methane anaerobic oxidation microbes on carbonate rocks with long-term cultivation in cold seep environment
Cun Li,
Jing-Chun Feng,
Xiao Chen,
Yingli Zhou,
Jianzhen Liang and
Si Zhang
Applied Energy, 2024, vol. 365, issue C, No S0306261924006792
Abstract:
The anaerobic oxidation of methane (AOM) and sulfate reduction processes in cold seep environments can control methane emission sources and thus mitigate the pressure of increasing global greenhouse gas concentrations. The surfaces of carbonate rocks in cold seep host an abundance of microorganisms that participate in AOM reactions. Investigating the metabolism and conversion of methane by these microbes is instrumental in advancing the exploration and utilization of deep-sea methane energy. Previous studies primarily focused on in-situ investigations of microbial communities on carbonate rocks in cold seep environments, while the dynamic balance of carbonate mineralization caused by microbial community changes and the characteristics of methane consumption in carbonate samples remains unclear. In this study, we used methane as the sole carbon source, enriched and cultured carbonate samples under high pressure, and monitored the community dynamics regularly. The results demonstrated that methane consumption and metabolic pathways played a crucial role in influencing community succession and carbonate mineralization. AOM processes, coupled with sulfate reduction and nitrate reduction, which are dominated by ANME-2c, facilitate the precipitation of calcium carbonate. Conversely, the acetate production process, dominated by ANME-1, may hinder the efficiency of calcium carbonate mineralization. Additionally, the impact of bacterial groups in the enrichment process, through the production of extracellular enzymes, organic acid pathways, and the expression of carbonic anhydrase pathways on carbonate mineralization, should not be disregarded. These findings highlight the significance of diverse pathway methane metabolism in the dynamics of methane consumption, deep-sea microbial communities, carbonate kinetics, and marine biological carbon sequestration processes.
Keywords: Cold seep; Methane mitigation; Anaerobic oxidation of methane; Carbonate; Prokaryotic communities (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006792
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123296
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().