EconPapers    
Economics at your fingertips  
 

Innovative framework for accurate and transparent forecasting of energy consumption: A fusion of feature selection and interpretable machine learning

Hamidreza Eskandari, Hassan Saadatmand, Muhammad Ramzan and Mobina Mousapour

Applied Energy, 2024, vol. 366, issue C, No S0306261924006974

Abstract: The study presents a novel framework integrating feature selection (FS) and machine learning (ML) techniques to forecast inland national energy consumption (EC) in the United Kingdom across all energy sources. This innovative framework strategically combines three FS approaches with five interpretable ML models using Shapley Additive Explanations (SHAP), with the dual goal of enhancing accuracy and transparency in EC predictions. By meticulously selecting the most pertinent features from diverse features—including meteorological conditions, socioeconomic parameters, and historical consumption patterns of different primary fuels—the proposed framework enhances the robustness of the forecasting model. This is achieved through benchmarking three FS approaches: ensemble filter, wrapper, and a hybrid ensemble filter-wrapper. In addition, we introduce a novel ensemble filter FS, synthesizing outcomes from multiple base FS methods to make well-informed decisions about feature retention. Experimental results underscore the efficacy of integrating both wrapper and ensemble filter-wrapper FS approaches with interpretable ML models, ensuring the forecasting process remains comprehensible and interpretable while utilizing a manageable number of features (four to eight). In addition, experimental results indicate that different feature subsets are usually selected for each combined FS approach and ML model. This study not only demonstrates the framework's capability to provide accurate forecasts but also establishes it as a valuable tool for policymakers and energy analysts.

Keywords: Energy consumption forecasting; Interpretable machine learning; Ensemble feature selection; Wrapper feature selection; Shapley analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006974
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006974

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123314

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006974