CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel
Mingkai Wang,
Pucheng Pei,
Yiming Xu,
Tengbo Fan,
Peng Ren,
Zijing Zhu,
Dongfang Chen,
Xi Fu,
Xin Song and
He Wang
Applied Energy, 2024, vol. 366, issue C, No S0306261924007098
Abstract:
Carbon monoxide poisoning poses a significant challenge for proton exchange membrane (PEM) fuel cells operating with CO-containing hydrogen. One established solution involves air bleeding, a process that enhances the oxidation of carbon monoxide at the anode side of the fuel cell by blending a small quantity of air with the impure hydrogen before its introduction into the fuel cell. However, researchers have raised concerns regarding durability issues about catalyst sintering and membrane decomposition induced by air bleeding. The effects and underlying mechanisms of air bleeding on PEM fuel cells have yet to be comprehensively elucidated. To address this, this study conducts a detailed durability test to quantitatively evaluate the effects of air bleeding on the CO-containing hydrogen-fueled PEM fuel cells via the micro-current excitation method. The investigation substantiates that the PtRu/C catalysts significantly enhance both the performance and durability of fuel cells when air bleeding is employed, exhibiting different CO-tolerance and decay behaviors compared to the Pt/C anode catalyst. Furthermore, the evolution of MEA parameters indicates that the advantageous behaviors of PtRu/C catalysts can be attributed to their CO-tolerance capabilities, alleviated anodic catalyst sintering and loss, and decreased chemical carbon support corrosion and membrane decomposition through diminished hydrogen peroxide generation. This study contributes critical insights and empirical evidence for researchers focusing on CO-tolerant catalyst materials, the durability of PEM fuel cells, and the conversion and utilization of impure hydrogen energy derived from fossil fuels.
Keywords: Polymer electrolyte membrane fuel cell; CO-tolerant catalyst; Fuel cell deterioration; Air bleeding; Impure hydrogen energy utilization; Micro-current excitation method (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924007098
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:366:y:2024:i:c:s0306261924007098
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123326
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().