Toward intelligent demand-side energy management via substation-level flexible load disaggregation
Ang Gao,
Jianyong Zheng,
Fei Mei and
Yu Liu
Applied Energy, 2024, vol. 367, issue C, No S030626192400744X
Abstract:
Non-intrusive load monitoring is a prominent part of demand-side energy management that provides visibility of flexible loads to support real-time electricity market pricing strategies and intelligent demand response programs. Compared with household-level load disaggregation, substation-level load disaggregation can significantly preserve residential privacy and reduce facility costs while providing sufficient information of flexible loads for intelligent demand-side energy management from the area scale. Especially, among various flexible loads, thermostatically controlled loads are highlighted due to their large proportion and high demand response elasticity. However, due to the variation and complexity of residential routines on a large scale, disaggregation of flexible loads from the substation level remains unsolved. To this end, focusing on thermostatically controlled loads, this paper proposes a contrastive sequence-to-point learning algorithm for substation-level flexible load disaggregation to fill the research gap. In the first stage, the theory of the effect of load aggregation and thermal inertia effect is introduced, and significant impact factors on flexible loads are summarized. Secondly, a substation-level flexible load disaggregation algorithm based on contrastive sequence-to-point learning is proposed, where pair-wise comparison and residual mechanism are combined in a semi-supervised structure to extract deep features and track fluctuations in flexible loads. Then, SHapley Additive exPlanations are utilized to ensure the optimization and interpretability of the algorithm. The proposed algorithm is tested and verified on public datasets under low frequency, reducing the disaggregation Mean Absolute Percentage Error of thermostatically controlled loads to as low as 8.78% and 11.26% for bi-directional and unidirectional structures separately. Additionally, it is generalizable to disaggregate other flexible loads, including photovoltaic and electric vehicles, demonstrating satisfactory performance. The algorithm has proved to be robust to data sparsity problems and practical for substation-level demand response potential estimation.
Keywords: Substation-level load disaggregation; Non-intrusive load monitoring; Flexible load; Contrastive regression learning; Demand response potential (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400744X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s030626192400744x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123361
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().