A hybrid physics-based and data-driven model for intra-day and day-ahead wind power forecasting considering a drastically expanded predictor search space
Nicolas Kirchner-Bossi,
Gabriel Kathari and
Fernando Porté-Agel
Applied Energy, 2024, vol. 367, issue C, No S030626192400758X
Abstract:
This work presents a novel hybrid (physics- and data-driven) model for short-term (intra-day and day-ahead, 3h-24h) wind power forecasting (STWPF). Traditionally, STWPF predictors admitted very few meteorological variables only from the grid points closest to the turbines. Here, with the aim to further capture the underlying atmospheric processes ruling the wind variability in the wind farm, the approach relies on drastically expanding the predictor space, composed of numerous meteorological variables throughout a large geographical domain, retrieved from a weather forecasting model (COSMO-1). An ad-hoc genetic algorithm that optimizes the selection of predictors is designed and combined with feed-forward artificial neural networks for its cost function evaluation. The introduced model is compared to multiple benchmark models in a 16-turbine wind farm in the Swiss Jura mountains. For +12h and +24h lead times, the new approach shows a root-mean squared error normalized to the installed wind farm capacity of 11% and 11.6%, respectively. These values entail ∼16% higher forecasting skill compared to state-of-the-art predictor frameworks. Results highlight the ability of the presented approach to systematically select as predictors different variables with a well-known impact on the wind farm performance, such as the turbulent kinetic energy or the vertical wind shear. Clustering the data according to the wind direction provides substantial benefit. In addition, it provides a better understanding of the attained improvement: largest performances occur in those wind directions affected by highly complex terrain. This indicates that the proposed model can be especially suitable for wind farms in complex terrain.
Keywords: Wind power forecasting; Day-ahead forecasting; Genetic algorithms; Machine learning; Numerical weather prediction; Turbulence intensity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400758X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s030626192400758x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123375
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().