EconPapers    
Economics at your fingertips  
 

Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms

Song Ding, Zhijian Cai, Xinghuan Qin and Xingao Shen

Applied Energy, 2024, vol. 367, issue C, No S0306261924007694

Abstract: In the pursuit of sustainable development, accurate renewable energy demand forecasting holds great significance for climate change mitigation and promoting sustainability. However, renewable energy forecasting has been consistently challenged by seasonality and nonlinearity. Identifying the periodic and nonlinear characteristics concealed within renewable energy sources accurately is still an unexplored problem. Consequently, an innovative nonlinear discrete seasonal grey model is proposed for renewable energy forecasting, which incorporates seasonal dummy variables and a power exponent term for handling the seasonality and nonlinear patterns in time series. Furthermore, an intelligent algorithm matching framework is proposed to augment the flexibility of the newly developed model. For practical purposes, the new methodology is contrasted against a range of benchmarks encompassing statistical, machine-learning, and traditional grey models in forecasting the quarterly total renewable energy consumption in the United States. The proposed model exhibits over 27% improvement rates over its counterparts, achieving the most superior predictive accuracies of 1.45%, 39.27, and 0.79 in MAPEP, RMSEP, and MASEP metrics, respectively. Furthermore, the probability density and sample size analyses are conducted to validate the robustness of the new model, confirming its adaptability and stability towards algorithm randomness and historical information volume. Consequently, the novel model is employed to forecast the short-to-long-terms renewable energy consumption in the U.S., showcasing an upward trend and seasonal fluctuations of the consumption for the forthcoming 24 quarters from 2023Q4 to 2029Q3. These insights can offer valuable implications to the stakeholders such as energy suppliers, utility managers, and policy advocates, highlighting actionable strategies for optimizing renewable energy consumption forecasting and aiding sustainable development initiatives.

Keywords: Grey model; Seasonal fluctuations; Probability density analysis; Renewable energy consumption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924007694
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007694

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123386

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007694