EconPapers    
Economics at your fingertips  
 

Dynamic optimization of an integrated energy system with carbon capture and power-to-gas interconnection: A deep reinforcement learning-based scheduling strategy

Tao Liang, Lulu Chai, Jianxin Tan, Yanwei Jing and Liangnian Lv

Applied Energy, 2024, vol. 367, issue C, No S0306261924007736

Abstract: This research presents an interconnected operation model that integrates carbon capture and storage (CCS) with power to gas (P2G), tackles the challenges encountered by integrated electricity-natural gas systems (IEGS) in terms of energy consumption and achieving low-carbon economic operations, and formulates a DRL-based, physically model-free energy optimization management strategy for IEGS, designed to lower operational costs and carbon emissions. Initially, the CCS-P2G interconnected IEGS system undergoes mathematical modeling. Subsequently, the system's uncertainty in optimal scheduling is formulated as a Markov decision process, with the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm facilitating real-time scheduling decisions. Comparative analysis across various scenarios demonstrates that the model offers superior low-carbon economic benefits and enhanced environmental sustainability. Further analysis validates that the optimized scheduling strategy proposed herein advantages in achieving low-carbon financial objectives, convergence speed, and system learning performance, as evidenced by training the model with historical data and the comparative analysis of the DQN and DDPG algorithms.

Keywords: CCS-P2G interconnection; IEGS; Low-carbon and economic dispatch; TD3 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924007736
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007736

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123390

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007736