Two-layer energy management strategy for grid-integrated multi-stack power-to-hydrogen station
Jiarong Li,
Bosen Yang,
Jin Lin,
Feng Liu,
Yiwei Qiu,
Yanhui Xu,
Ruomei Qi and
Yonghua Song
Applied Energy, 2024, vol. 367, issue C, No S0306261924007967
Abstract:
Large-scale power-to‑hydrogen (P2H) stations with multi-stack configurations, are emerging as valuable flexible resources for the power grid. The energy management strategy (EMS) determines multi-stack operation statuses. Nonetheless, existing EMS focus on production without adequately addressing the implications for grid-side power factor (PF) and potential security concerns. This paper addresses this limitation by presenting a model that characterizes the PF of a multi-stack P2H system across varying operation statuses defined by current and temperature. Through this model, we highlight a clear trade-off between the PF constraint and production targets in multi-stack scheduling. Subsequently, we introduce an improved EMS framework for multi-stack P2H that seeks a balance between PF, production, and security. This EMS is organized as a two-layer execution structure to guarantee control accuracy and tractability, which includes a model-based robust multi-stack scheduling programming and a rule-based real-time increment correction algorithm in series. Case studies compare multi-stack scheduling strategies under the proposed EMS with the traditional production-oriented strategy. The effectiveness of the extended PF and security dimensions is verified to comprehensively improve the responsiveness to power instructions. Furthermore, we outline five representative cluster-level scheduling strategies aligned with different load scenarios, offering insights for practical industrial implementations.
Keywords: Multi-stack; Power-to‑hydrogen; Power factor; Energy management strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924007967
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007967
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123413
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().