EconPapers    
Economics at your fingertips  
 

Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network

Kanru Cheng, Kunyu Zhang, Yuzhang Wang, Chaoran Yang, Jiao Li and Yueheng Wang

Applied Energy, 2024, vol. 367, issue C, No S030626192400802X

Abstract: Health management plays a significant role in preserving the reliability and safety of gas turbines. An accurate assessment of the health status of gas turbines is critical for the realization of predictive health management. However, existing health assessment methods do not take into account the physical relationships and spatial states within the system. The focus of this study is to establish a methodology that can concurrently utilize physical relationships and data for the quantitative assessment of gas turbine health. This study proposes a novel Physical Spatial-Temporal Graph Convolutional Network (Phy-STGCN) approach that combines prior physical knowledge with data-driven techniques by incorporating the structural and operational mechanisms of gas turbine into a graph-based model. First, the concept of gas turbine health is defined, followed by the validation of the rationality behind health classification. Second, a temporal graph construction method based on K-nearest neighbor and prior physical knowledge is introduced. Third, a network architecture based on graph neural networks is proposed to incorporate the temporal and spatial dependencies present in the data. The proposed method is validated using gas turbine data, achieving a health assessment accuracy of 90.8%. At the initial stages of health degradation, the assessment accuracy can exceed 98.9%. Through a series of comparative and ablation experiments, the efficacy of the Phy-STGCN method in gas turbine health assessment is further substantiated. These results demonstrate that the proposed method can effectively leverage prior physical knowledge and the spatial coupling information between data, realizing a quantitative mapping from multi-source monitorable data to system states. This study provides insights for research on health assessment methods that integrate physical and data-driven approaches.

Keywords: Health assessment; Gas turbine; Graph neural network; Priori knowledge (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400802X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s030626192400802x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123419

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400802x