EconPapers    
Economics at your fingertips  
 

Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods

Yuanmao Li, Guixiong Liu, Wei Deng and Zuyu Li

Applied Energy, 2024, vol. 367, issue C, No S0306261924008201

Abstract: The accurate determination of electrochemical parameters in lithium-ion batteries is crucial for assessing battery health. This study conducted a comparative investigation utilizing 78 popular meta-heuristic algorithms for parameter identification in simulations. In the electrochemical identification framework proposed herein, the pseudo-two-dimensional model of a lithium-ion battery was solved using the finite element method, and the electrochemical parameters were identified using meta-heuristic algorithms in a one-step strategy. Parameter identification was conducted under high-rate discharge/charge conditions with a loading current of 5C. The discussion encompassed the accuracy, convergence speed, and robustness of the 78 different meta-heuristic algorithms. Notably, the teaching learning-based optimization algorithm exhibited the highest accuracy, albeit with a moderate computational burden. With the exception of the search and rescue optimization algorithm, other algorithms with mean absolute percentage errors of less than 15% demonstrated relatively high robustness. Furthermore, a piecewise C-rates working condition was employed to validate the previous conclusions. Ultimately, this study proposed a modified teaching learning-based optimization algorithm to enhance the precision and computational efficiency of electrochemical parameter identification. This comparative analysis contributed novel insights into electrochemical parameter identification methods employing meta-heuristic algorithms.

Keywords: Parameter identification; Meta-heuristic methods; Electrochemical model; Lithium-ion battery (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924008201
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008201

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123437

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008201