EconPapers    
Economics at your fingertips  
 

Distributionally robust and transactive energy management scheme for integrated wind-concentrated solar virtual power plants

Houbo Xiong, Fengji Luo, Mingyu Yan, Lei Yan, Chuangxin Guo and Gianluca Ranzi

Applied Energy, 2024, vol. 368, issue C, No S0306261924005312

Abstract: In the pursuit of a near‑carbon-emission electric sector, concentrated solar power plants (CSP) and wind generators have gained prominence, promising dispatchable electricity for renewable-dominated grids. However, the existing studies focus on the coordinated scheduling of CSP and wind energy, overlooking the critical issue of energy pricing and trading. Moreover, a decentralized model for multiple networks that incorporate both CSP and wind generators, remains under-investigated. Accordingly, this paper proposes a fully decentralized distributionally robust transactive energy management (DRTM) framework for the energy trading, pricing and scheduling across multiple integrated wind-concentrated solar virtual power plants (IWC-VPP), using the alternating direction method of multipliers (ADMM). This model allows each IWC-VPP operator to make independent decisions and share minimal information, ensuring privacy encryption. Based on the distributionally robust optimization (DRO), the DRTM framework can balance robustness and cost-effectiveness in making decisions under uncertainties. For efficient resolution, an adaptive buffer-column and constraint generation (AB-C&CG) algorithm is introduced, which reduces the complexity of the master problem compared to the traditional C&CG. Additionally, a varying penalty factor technique is integrated into ADMM to accelerate computation, and a two-block process is implemented to ensure finite convergence of the entire decentralized framework. Numerical studies on the three-VPP 25-Bus system and four-VPP 156-Bus system validate the effectiveness of the proposed DRTM framework. The simulation results demonstrate the varying penalty factor technique bolsters computational efficiency by up to 46.51% for standard ADMM. Compared with the conventional C&CG, the AB-C&CG significantly reduces the computational consumption by 50.98%, and with the error <0.46%.

Keywords: Concentrated solar power plants; Wind energy; Decentralized model; Virtual power plant; Distributionally robust optimization; Privacy encryption; Adaptive buffer; Varying penalty factor technique (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924005312
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s0306261924005312

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123148

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924005312