EconPapers    
Economics at your fingertips  
 

Energy management of a microgrid considering nonlinear losses in batteries through Deep Reinforcement Learning

David Domínguez-Barbero, Javier García-González, Miguel Á. Sanz-Bobi and Aurelio García-Cerrada

Applied Energy, 2024, vol. 368, issue C, No S0306261924008183

Abstract: The massive deployment of microgrids could play a significant role in achieving decarbonization of the electric sector amid the ongoing energy transition. The effective operation of these microgrids requires an Energy Management System (EMS), which establishes control set-points for all dispatchable components. EMSs can be formulated as classical optimization problems or as Partially-Observable Markov Decision Processes (POMDPs). Recently, Deep Reinforcement Learning (DRL) algorithms have been employed to solve the latter, gaining popularity in recent years. Since DRL methods promise to deal effectively with nonlinear dynamics, this paper examines the Twin-Delayed Deep Deterministic Policy Gradient (TD3) performance – a state-of-the-art method in DRL – for the EMS of a microgrid that includes nonlinear battery losses. Furthermore, the classical EMS-microgrid interaction is improved by refining the behavior of the underlying control system to obtain reliable results. The performance of this novel approach has been tested on two distinct microgrids – a residential one and a larger-scale grid – with a satisfactory outcome beyond reducing operational costs. Findings demonstrate the intrinsic potential of DRL-based algorithms for enhancing energy management and driving more efficient power systems.

Keywords: Deep Reinforcement Learning; Energy management system; Energy savings; Isolated microgrid; Nonlinear battery model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924008183
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008183

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123435

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008183