A valuation framework for customers impacted by extreme temperature-related outages
Min Gyung Yu,
Monish Mukherjee,
Shiva Poudel,
Sadie R. Bender,
Sarmad Hanif,
Trevor D. Hardy and
Hayden M. Reeve
Applied Energy, 2024, vol. 368, issue C, No S030626192400833X
Abstract:
Extreme temperature outages can lead to not just economic losses but also various non-energy impacts (NEI), such as increased mortality rates, property damage, and reduced productivity, due to significant degradation of indoor operating conditions caused by service disruptions. However, existing resilience assessment approaches lack specificity for extreme temperature conditions. They often overlook temperature-related mortality and neglect the customer characteristics and grid response in the calculation, despite the significant influence of these factors on NEI-related economic losses. This paper aims to address these gaps by introducing a comprehensive framework to estimate the impact of resilience enhancement not only on the direct economic losses incurred by customers but also on potential NEI, including mortality and the value of statistical life during extreme temperature-related outages. The proposed resilience valuation integrates customer characteristics and grid response variables based on a scalable grid simulation environment. This study adopts a holistic approach to quantify customer-oriented economic impacts, utilizing probabilistic loss scenarios that incorporate health-related factors and damage/loss models as a function of exposure for valuation. The proposed methodology is demonstrated through comparative resilient outage planning, using grid response models emulating a Texas weather zone during the 2021 winter storm Uri. The case study results show that enhanced outage planning with hardened infrastructure can improve the system resilience and thereby reduce the relative risk of mortality by 16% and save the total costs related to non-energy impacts by 74%. These findings underscore the efficacy of the framework by assessing the financial implications of each case, providing valuable insights for decision-makers and stakeholders involved in extreme-weather related resilience planning for risk management and mitigation strategies.
Keywords: Resilience; Extreme temperatures; Power distribution control; Valuation; Customer interruption costs (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400833X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s030626192400833x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123450
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().