Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium‑iron phosphate battery under different thermal runaway triggering modes
Deng Jie,
Chen Baohui,
Lu Jiazheng,
Zhou Tiannian and
Wu Chuanping
Applied Energy, 2024, vol. 368, issue C, No S0306261924008341
Abstract:
A comprehensive understanding of the thermal runaway (TR) and combustion characteristics of lithium-ion batteries (LIBs) is vital for safety protection of LIBs. LIBs are often subjected to abuse through the coupling of various thermal trigger modes in large energy storage application scenarios. In this paper, we systematically investigated the TR and combustion characteristics of heating + overcharge and heating + short circuit at different temperatures and compared them with individual heating, overcharge, and short circuit. Additionally, we analyzed the TR and combustion hazards of different thermal triggering modes using Analytic Hierarchy Process (AHP). The results show that heating + overcharge has a shorter time of safety valve opening and TR, a lower thermal runaway temperature, a higher peak heat release rate (HRR), and is more hazardous than heating and overcharge. Compared with heating, heating + short circuit shortens safety valve opening time and increases peak HRR; versus short circuit, heating + short circuit lowers TR temperature and TR time, enhances peak HRR, and causes a higher hazard. The AHP analysis indicates that the TR temperature and fire growth index are the most critical parameters and that heating + overcharge has the biggest TR and combustion hazards; besides, heating + short circuit exists higher TR risk and hazards than short circuit and greater combustion risks and hazards than heating. The research findings can provide valuable guidance for protecting and preventing energy storage LIBs TR.
Keywords: lithium-ion battery; Heating; Overcharge; Short circuit; Thermal runaway; Combustion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924008341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008341
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123451
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().