Research on energy management strategy for fuel cell hybrid electric vehicles based on multi-scale information fusion
Haitao Min,
Huiduo Wu,
Honghui Zhao,
Weiyi Sun and
Yuanbin Yu
Applied Energy, 2024, vol. 368, issue C, No S0306261924008699
Abstract:
Energy management strategies (EMSs) based on speed prediction are widely used in fuel cell hybrid electric vehicles (FCHEVs). However, two fundamental issues must be addressed: short-term speed prediction and power allocation across multi-scales. To address these issues, a hierarchical EMS for FCHEV based on multi-scale information fusion is developed in this study. In this strategy, a novel speed predictor that incorporates visual information and the motion states of a vehicle is used to predict the short-term speed. At the global level, the average power demand of each road segment is predicted based on real-time traffic information, which is used to plan the global reference state of charge (SOC) trajectory before departure. At the local level, fuzzy rules are utilized to determine the short-term reference SOC. The short-term optimal co-state of the Pontryagin minimal principle-based strategy is then updated. The results demonstrate that the proposed visual information speed predictor (VISP) enhances the prediction accuracy by 12%–32.5% and leads to a 3.36% reduction in the total cost compared with the EMS utilizing the conventional predictor. In addition, the proposed EMS makes the terminal SOC close to the target value and reduces the total cost by 20.33% compared to the benchmark strategy.
Keywords: Fuel cell hybrid electric vehicle; Energy management strategy; Visual information; Speed prediction; Traffic information. (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924008699
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008699
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123486
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().