EconPapers    
Economics at your fingertips  
 

Experimental and computational insights into the inhibition of CO2 hydrate formation using biodegradable oligopeptides and their significance in CO2 transport and storage

Woojin Go, Seongju Mun and Yongwon Seo

Applied Energy, 2024, vol. 368, issue C, No S0306261924009061

Abstract: The current emphasis on achieving carbon neutrality underscores the significance of carbon capture, utilization, and storage, making the avoidance of CO2 hydrate formation in transmission and transport pipelines crucial. Considering this, the present study explored the potential of oligopeptides as biodegradable kinetic hydrate inhibitors (KHIs) for inhibiting CO2 hydrate formation. Dipeptides (L-alanyl-L-alanine [Ala-Ala], L-alanylglycine [Ala-Gly], and glycylglycine [Gly-Gly]) and a tripeptide (glycylglycylglycine [Gly-Gly-Gly]) were investigated through a combination of experimental measurements and molecular dynamics (MD) simulations. Onset temperature measurements were obtained to evaluate the inhibition effects of the oligopeptides. The results demonstrated the effective hindrance of CO2 hydrate formation by the oligopeptides at a significantly low concentration (1.0 wt%). The MD simulations provided molecular-level insights into the hydrate inhibition mechanisms of the oligopeptides during CO2 hydrate formation, revealing their influence on the growth, dissociation, and structural dynamics of CO2 hydrates. Additional investigations involving mean square displacement, diffusion coefficients, and radial distribution function provided a deeper understanding of molecular motion, mobility, and hydrate bond disruption in the presence of the oligopeptides. The research findings highlight the efficacy of oligopeptides as novel KHIs for inhibiting CO2 hydrate formation, thereby contributing to the development of environmentally friendly KHIs and the sustainable management of CO2 transmission and transport pipelines.

Keywords: CO2 hydrate; CO2 transport; Hydrate inhibitor; Oligopeptide; Biodegradable inhibitor; Molecular dynamics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924009061
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s0306261924009061

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123523

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924009061