General generative AI-based image augmentation method for robust rooftop PV segmentation
Hongjun Tan,
Zhiling Guo,
Zhengyuan Lin,
Yuntian Chen,
Dou Huang,
Wei Yuan,
Haoran Zhang and
Jinyue Yan
Applied Energy, 2024, vol. 368, issue C, No S0306261924009371
Abstract:
Rooftop photovoltaic (PV) segmentation based on remote sensing images is highly applied in solar potential assessment and prediction. Still, such methods often feature dataset limitations of PV data, poor robustness, and are non-generalizable. General Generative AI eliminates the need for pre-training emerging to improve the sample diversity and algorithm robustness and generalizability of the segmentation. This paper designs a PV sample generation method based on the generative model, which leverages the text-guided stable diffusion inpainting model to augment the PV dataset and generate massive multi-background rooftop PV panel samples. The real and generated samples are mixed in different proportions to form a new training set for ablation experiments. Results show that a small number of real datasets mixed with generated data could reach a high relative IoU and Precision value. In small sample learning, the generated data achieves similar effects as real data during the segmenting process even better than without generated data. It demonstrates that the generated datasets outperform traditionally augmented data and that the manual text prompts are tested more accurately than ChatGPT-generated ones. This study highlights the efficiency and robustness of generated datasets in PV segmentation tasks and moves beyond the constraints of remote sensing data acquisition and limited data diversity. Further, it would facilitate large-scale assessments of the urban PV potential for urban planners and policymakers using an efficient and low-cost method.
Keywords: General generative AI; ChatGPT; Stable diffusion; Data augmentation; PV segmentation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924009371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:368:y:2024:i:c:s0306261924009371
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123554
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().