Performance degradation in an advanced power system by analyzing process dynamics
Swatara Tucker,
Natarianto Indrawan,
Lawrence J. Shadle,
Nor Farida Harun and
David Tucker
Applied Energy, 2024, vol. 369, issue C, No S0306261924008870
Abstract:
Power plants are increasingly required to cycle to meet dispatch demand. Performance degradation in a recuperative gas turbine power system designed for hybridization was studied using start-up transients over a six-year period. The advanced power system consisted of a gas turbine, compressor, exhaust gas recuperator, hybrid system plenum, natural gas combustor, generator, and electric load bank. A Python script was used to align, filter, organize, transform, and summarize process data from facility start-up sequences. Data analytics including principal component and discriminant analyses were applied to identify potential sources of performance degradation for hybrid power systems in this hybrid configuration. Over 177 start-up tests from 103 datasets were considered in the analysis. The fuel flow increased with timestamp for the same start-up sequence, indicating a loss in efficiency. The decrease in efficiency could be detected in similar variations in pressures and temperatures around the turbine, but the changes in these indicators were unaffected by replacing the turbine. It was inferred from the results that a leak in the compressed gas system was responsible for the degradation. This multivariable methodology can be readily adapted to investigate the effects of system component wear and tear resulting in a decrease in system performance.
Keywords: Gas turbine; Data analytics; Degradation; Efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924008870
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:369:y:2024:i:c:s0306261924008870
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123504
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().