EconPapers    
Economics at your fingertips  
 

Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy

L.R. Visser, T.A. AlSkaif, A. Khurram, J. Kleissl and W.G.H.J.M. van Sark

Applied Energy, 2024, vol. 370, issue C, No S0306261924009565

Abstract: Solar forecasting is a rapidly evolving field that can substantially contribute to the effective integration of large amounts of solar photovoltaic (PV) capacity into the electricity system. However, newly developed solar forecasting models are rarely tested in an operational context considering the intended application and objective. Besides, models are typically evaluated considering only technical error metrics, disregarding their economic value. This paper proposes an operational bidding strategy that optimizes the participation of a PV power plant in the electricity spot markets. To this end, a novel multistage stochastic optimization method is developed that considers the day-ahead, intraday, and imbalance markets. As the developed method utilizes a scenario generation algorithm, the proposed method can be adopted for a wide variety of related applications. The performance of the developed method is assessed using technical and economic metrics and compared to a reference method. The results demonstrate the effectiveness of the proposed bidding strategy, as it substantially outperforms the reference market bidding strategy. The findings also provide insights into the value of a multistage bidding method, as extending market participation from the day-ahead to the intraday market increases revenues by 22%, while halving the total imbalance. Additionally, the study examines the relationship between the technical and economic performance of solar power forecasting models, revealing a non-linear correlation.

Keywords: Photovoltaic power; Probabilistic forecasting; Stochastic optimization; Electricity markets (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924009565
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009565

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123573

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009565