Effect of gravel pack permeability on horizontal well productivity loss under secondary methane hydrate formation: Experimental optimization of 3D randomly distributed mixed sand pack
Hao Peng,
Xiaosen Li,
Zhaoyang Chen,
Yu Zhang,
Hongfei Ji and
Yifan Weng
Applied Energy, 2024, vol. 371, issue C, No S0306261924010468
Abstract:
Horizontal well productivity is limited by secondary hydrate formation (temperature drop results from endothermic of hydrate dissociation) during production. Seepage capacity as one of the key indexes for evaluating production efficiency, and efficiency is declined by sand production. Sand control is achieved by using gravel pack technology (selected sands for hindering the sediments particles migration), which extends the production time. However, forecasting the productivity decline trend from quantifying the permeability of the gravel pack after secondary formation remain challenges. To address these issues, a randomly distributed 3D normalized permeability (Kr) model was developed to describe the seepage capacity of gravel pack composed by various particle sizes of mixed glass beads. The theoretical modelling was established by observing micro spatial structure of glass beads with hydrate formation. The new model considered three consolidation modes of hydrate in pores (cementing + bearing, pore filling, and grain coating) and linked them with the productivity ratio equation of a horizontal gas well. To confirm the viability of the model, a series of permeability measurement experiments with various size ratios (α) from 1 to 10 were conducted. Finally, errors comparison and all parameters of the model were analyzed. The results showed that the productivity ratio declined clearly after saturation is >0.79, when α = 4. For long-term production, α = 10 would be better. The new model can help hydrate horizontal wells increase production from laboratory to industrial exploitation.
Keywords: Permeability; Horizontal well productivity; Random distribution; Gravel pack; Secondary hydrate formation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924010468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010468
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123663
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().