Heterogeneous technology-induced global CO2 emission reduction and emission forecasting since the Kyoto era
Chong Xu,
Zengqiang Qin,
Jiandong Chen and
Jiangxue Zhang
Applied Energy, 2024, vol. 371, issue C, No S0306261924010614
Abstract:
While identifying the drivers of global CO2 emission is crucial for climate change mitigation, the heterogeneous technology-related drivers (e.g., technological change and efficiency of energy and CO2 emission) were ignored to a large extent at a global scale, hindering to formulate heterogenous climate policies. Moreover, the projection of CO2 emission was also not well compared for countries. Here, the study investigated the heterogeneous technology-related drivers of CO2 emissions in time and space simultaneously in 42 major emitter countries over 1998–2020 by extending the spatiotemporal production-theoretical decomposition models, and compared the different performances for forecasting CO2 emission by traditional time-series models and several machine learning models. Key findings as follows: first, drivers of CO2 emissions exhibit significant heterogeneity across countries where the effects of energy usage technology gap and CO2 emission technology gap were negative drivers for USA, South Korea, and the Czech Republic and potential energy intensity effect was the negative driver in countries like China, Russia, Japan, and India. Second, the effects of within-GDP per capita and within- population size were the important drivers affecting global CO2 emission difference. Third, general regression neural network achieved the best forecasting performance on average compared with other models in the study. The study highlights the importance of formulating climate policies based on heterogeneous technology and emission forecast modeling.
Keywords: Heterogeneous technology; Global CO2 emission; Forecasting; Driver (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924010614
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010614
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123678
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().