EconPapers    
Economics at your fingertips  
 

Sparse dynamic graph learning for district heat load forecasting

Yaohui Huang, Yuan Zhao, Zhijin Wang, Xiufeng Liu and Yonggang Fu

Applied Energy, 2024, vol. 371, issue C, No S0306261924010687

Abstract: Accurate heat load forecasting is crucial for the efficient operation and management of district heating systems. This study introduces a novel Sparse Dynamic Graph Neural Network (SDGNN) framework designed to address the complexities of forecasting heat load in district heating networks. The proposed model represents the district heating network as a dynamic graph, with nodes corresponding to consumers or heat sources and edges denoting temporal dependencies. The SDGNN framework comprises three key components: (1) a sparse graph learning module that identifies the most relevant nodes and edges, (2) a spatio-temporal memory enhancement module that captures both short-term and long-term dependencies, and (3) a temporal fusion module that integrates node representations into a comprehensive global forecast. Evaluated on a real-world district heating dataset from Denmark, the SDGNN model demonstrates superior accuracy and efficiency compared to existing methods. The results indicate that the SDGNN framework effectively captures intricate spatio-temporal patterns in historical heat load data, achieving up to 5.7% improvement in RMSE, 7.4% in MAE, and 5.7% in CVRMSE over baseline models. Additionally, incorporating meteorological factors into the model further enhances its predictive performance. These findings suggest that the SDGNN framework is a robust and scalable solution for district heat load forecasting, with potential applications in other domains involving spatio-temporal graph data.

Keywords: District heating; Dynamic graph neural network; Spatio-temporal forecasting; Heat load prediction; Sparse graph learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924010687
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010687

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123685

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010687