Sparse dynamic graph learning for district heat load forecasting
Yaohui Huang,
Yuan Zhao,
Zhijin Wang,
Xiufeng Liu and
Yonggang Fu
Applied Energy, 2024, vol. 371, issue C, No S0306261924010687
Abstract:
Accurate heat load forecasting is crucial for the efficient operation and management of district heating systems. This study introduces a novel Sparse Dynamic Graph Neural Network (SDGNN) framework designed to address the complexities of forecasting heat load in district heating networks. The proposed model represents the district heating network as a dynamic graph, with nodes corresponding to consumers or heat sources and edges denoting temporal dependencies. The SDGNN framework comprises three key components: (1) a sparse graph learning module that identifies the most relevant nodes and edges, (2) a spatio-temporal memory enhancement module that captures both short-term and long-term dependencies, and (3) a temporal fusion module that integrates node representations into a comprehensive global forecast. Evaluated on a real-world district heating dataset from Denmark, the SDGNN model demonstrates superior accuracy and efficiency compared to existing methods. The results indicate that the SDGNN framework effectively captures intricate spatio-temporal patterns in historical heat load data, achieving up to 5.7% improvement in RMSE, 7.4% in MAE, and 5.7% in CVRMSE over baseline models. Additionally, incorporating meteorological factors into the model further enhances its predictive performance. These findings suggest that the SDGNN framework is a robust and scalable solution for district heat load forecasting, with potential applications in other domains involving spatio-temporal graph data.
Keywords: District heating; Dynamic graph neural network; Spatio-temporal forecasting; Heat load prediction; Sparse graph learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924010687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010687
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123685
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().