EconPapers    
Economics at your fingertips  
 

Neural equivalent circuit models: Universal differential equations for battery modelling

Jishnu Ayyangatu Kuzhiyil, Theodoros Damoulas and W. Dhammika Widanage

Applied Energy, 2024, vol. 371, issue C, No S0306261924010754

Abstract: Current battery modelling methodologies including equivalent circuital modelling and electrochemical modelling do not maintain accuracy over diverse operating conditions of current rates, depth-of-discharge and temperatures. To address this limitation, this article proposes the Universal Differential Equations (UDE) framework from scientific machine learning (SciML) as a methodology to generate battery models with improved generalisability. The effectiveness of UDE in enhancing generalisability is demonstrated through a specific battery modelling example. The approach starts with the Thermal Equivalent Circuital Model with Diffusion (TECMD), a state-of-the-art battery model, which is then enhanced through the integration of neural networks into its state equations, resulting in the Neural-TECMD; a UDE model. Additionally, a two-stage UDE parameterisation method is introduced, combining collocation-based pretraining with mini-batch training. The parameterisation method enables the neural networks in the Neural-TECMD to efficiently learn battery dynamics from multiple time series data sets, covering a wide operating spectrum. Consequently, the Neural-TECMD model offers accurate predictions over broader operating conditions, thus enhancing model generalisability. The Neural-TECMD model was validated using 20 data sets covering current rates of 0 to 2C and temperatures from 0 to 45 °C. This validation revealed substantial improvements in accuracy, with an average of 34.51% decrease in RMSE for voltage and a 24.94% decrease for temperature predictions compared to the standard TECMD model.

Keywords: Universal differential equations; Scientific machine learning; Battery modelling; Equivalent circuit model; Physics informed machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924010754
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010754

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123692

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010754