A city-level assessment of residential PV hosting capacity for low-voltage distribution systems considering rooftop data and uncertainties
Umar Hanif Ramadhani,
Fatemeh Johari,
Oskar Lindberg,
Joakim Munkhammar and
Joakim Widén
Applied Energy, 2024, vol. 371, issue C, No S0306261924010985
Abstract:
The increasing trend of small-scale residential photovoltaic (PV) system installation in low-voltage (LV) distribution networks poses challenges for power grids. To quantify these impacts, hosting capacity has become a popular framework for analysis. However, previous studies have mostly focused on small-scale or test feeders and overlooked uncertainties related to rooftop azimuth and tilt. This paper presents a comprehensive evaluation of city-level PV hosting capacity using data from over 300 real LV systems in Varberg, Sweden. A previously developed rooftop azimuth and tilt model is also applied and evaluated. The findings indicate that the distribution systems of the city, with a definition of PV penetration as the percentage of houses with 12 kW installed PV systems, can accommodate up to 90% PV penetration with less than 1% risk of overvoltage, and line loading is not a limiting factor. The roof facet orientation modeling proves to be suitable for city-level applications due to its simplicity and effectiveness. Sensitivity studies reveal that PV system size assumptions significantly influence hosting capacity analysis. The study provides valuable insights for planning strategies to increase PV penetration in residential buildings and offers technical input for regulators and grid operators to facilitate and manage residential PV systems.
Keywords: PV hosting capacity; Low voltage system; Rooftop solar photovoltaic; Uncertainty modeling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924010985
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010985
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123715
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().