A robust lattice Boltzmann scheme for high-throughput predicting effective thermal conductivity of reinforced composites
Mingshan Yang,
Xiangyu Li and
Weiqiu Chen
Applied Energy, 2024, vol. 371, issue C, No S0306261924011097
Abstract:
Accurately predicting effective thermal conductivity is of great importance for the design and performance evaluation of emerging composites. In this paper, an efficient and implementation-friendly lattice Boltzmann (LB) scheme for predicting the effective thermal conductivity of 3D complex structures is proposed. The key innovation is that the optimum convergence parameter of the 3D thermal LB method is found, which enables the LB equation to converge to steady heat conduction equation with the fastest speed and without losing any accuracy. To deal with the thermal contact resistance between different components, an interface treatment scheme is derived. In comparison with the existing schemes, the present scheme enjoys several hundred times higher computational efficiency. By virtue of this LB scheme, the effective thermal conductivity of the reinforced composites with different dimensional fillers are systematically calculated, and a comprehensive machine learning model is developed. This work provides a powerful numerical tool for high-throughput simulations of the 3D representative volume elements with high thermal conductivity ratios and large grid numbers. It may facilitate the application of data-driven techniques in study of the thermal transport properties of emerging composite materials and structures.
Keywords: High-throughput simulations; Lattice Boltzmann method; Phase change composites; Machine learning prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924011097
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011097
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123726
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().