A new strategy to produce calcium carbide-acetylene from integrated multi-level low carbon construction driven by biomass11The short version of the paper was presented at ICAE2023, Doha, Qatar, Dec 3–5, 2023. This paper is a substantial extension of the short version of the conference paper
Hongxia Wang,
Xiaoli Li,
Zhen Wu,
Wei Shen,
Kai Chen,
Bingqing Hong and
Zaoxiao Zhang
Applied Energy, 2024, vol. 371, issue C, No S0306261924011504
Abstract:
A highly efficient and clean biomass energy-based calcium carbide-acetylene production system, including low-carbon energy supply, solid waste recycling and cascade utilization of waste heat, has been developed for the conventional energy-intensive and highly polluting fossil fuel-dependent calcium carbide industry. This system supplies the carbide-acetylene production plant with energy from the gasification of biomass and converts the plant's solid waste carbide slag into the calcium feedstock required by the plant. The waste heat from the plant's high-temperature exhaust gases is recycled and used via the multi-stage heat exchange, so that the energy cascade conversion and utilization is achieved. A simulation model of the plant is created in Aspen Plus, and a mathematical model for the biomass gasification process and cycle compensation of the calcium source through the Fortran language is written and embedded. When calculating the carbon consumption and CO2e emissions of the system, it was found that the carbon consumption and CO2e emissions of the conventional process were 5.43 t Coal·t−1C2H2 and 2.25 t CO2e·t−1C2H2, respectively. However, the carbon consumption of the new process was reduced by 65.19%, and carbon emissions by 27.24% in comparison. The energy analysis shows that the energy efficiency of the system is 36.21% for the conventional process and 44.82% for the new processes. The exergy analysis of the effective energy shows that the exergy efficiency of the new process is 73.20%, which is 52.98% better than that of the conventional process. Introduction of an index, the levelized income of acetylene product (LIOA), to characterize the product income of the system. When the price of acetylene is between 2.23 $/kg and 4.19 $/kg, the LIOA for the conventional and the new processes are 1.41 $/kg to 3.38 $/kg and − 1.28 $/kg to 0.68 $/kg, respectively. It is worth noting that the critical price (PCC2H2) for products generating net revenue from the new process is 3.17 $/kg. This study is of great importance for the development of a low-carbon biomass-coupled calcium carbide-acetylene process.
Keywords: Biomass-driven; Calcium carbide-acetylene; Calcium looping; Levelized income; Cascade utilization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924011504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011504
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123767
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().