Ventilation and temperature control for energy-efficient and healthy buildings: A differentiable PDE approach
Yuexin Bian,
Xiaohan Fu,
Rajesh K. Gupta and
Yuanyuan Shi
Applied Energy, 2024, vol. 372, issue C, No S0306261924008602
Abstract:
In response to the COVID-19 pandemic, there has been a notable shift in literature towards enhancing indoor air quality and public health via Heating, Ventilation, and Air Conditioning (HVAC) control. However, many of these studies simplify indoor dynamics using ordinary differential equations (ODEs), neglecting the complex airflow dynamics and the resulted spatial–temporal distribution of aerosol particles, gas constituents and viral pathogen, which is crucial for effective ventilation control design. We present an innovative partial differential equation (PDE)-based learning and control framework for building HVAC control. The goal is to determine the optimal airflow supply rate and supply air temperature to minimize the energy consumption while maintaining a comfortable and healthy indoor environment. In the proposed framework, the dynamics of airflow, thermal dynamics, and air quality (measured by CO2 concentration) are modeled using PDEs. We formulate both the system learning and optimal HVAC control as PDE-constrained optimization, and we propose a gradient descent approach based on the adjoint method to effectively learn the unknown PDE model parameters and optimize the building control actions. We demonstrate that the proposed approach can accurately learn the building model on both synthetic and real-world datasets. Furthermore, the proposed approach can significantly reduce energy consumption while ensuring occupants’ comfort and safety constraints compared to existing control methods such as maximum airflow policy, model predictive control (MPC) with ODE models, and reinforcement learning.
Keywords: Energy-efficient buildings; Data-driven control; Heating, ventilation, and air conditioning (HVAC) system; Indoor air quality; Control of partial differential equations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924008602
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:372:y:2024:i:c:s0306261924008602
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123477
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().