EconPapers    
Economics at your fingertips  
 

Visibility-enhanced model-free deep reinforcement learning algorithm for voltage control in realistic distribution systems using smart inverters

Yansong Pei, Ketian Ye, Junbo Zhao, Yiyun Yao, Tong Su and Fei Ding

Applied Energy, 2024, vol. 372, issue C, No S0306261924011413

Abstract: Increasing integration of distributed solar photovoltaic (PV) into distribution networks could result in adverse effects on grid operation. Traditional model-based control algorithms require accurate model information that is difficult to acquire and thus are challenging to implement in practice. This paper proposes a surrogate model-enabled grid visibility scheme to empower deep reinforcement learning (DRL) approach for distribution network voltage regulation using PV inverters with minimal system knowledge. In contrast to existing DRL methods, this paper presents and corroborates the adverse impact of missing load information on DRL performance and, based on this finding, proposes a surrogate model methodology to impute load information utilizing observable data. Additionally, a multi-fidelity neural network is utilized to construct the DRL training environment, chosen for its efficient data utilization and enhanced robustness to data uncertainty. The feasibility and effectiveness of the proposed algorithm are assessed by considering DRL testing across varying degrees of observable load information and diverse training environments on a realistic power system.

Keywords: Reinforcement learning; Active distribution systems; Grid visibility; Surrogate model; PV inverter (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924011413
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011413

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123758

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011413