EconPapers    
Economics at your fingertips  
 

A hybrid deep learning model towards fault diagnosis of drilling pump

Junyu Guo, Yulai Yang, He Li, Jiang Wang, Aimin Tang, Daiwei Shan and Bangkui Huang

Applied Energy, 2024, vol. 372, issue C, No S0306261924011565

Abstract: This paper proposes a novel method namely WaveletKernelNet-Convolutional Block Attention Module-BiLSTM for intelligent fault diagnosis of drilling pumps. Initially, the random forest method is applied to determine the target signals that can reflect the fault characteristics of drilling pumps. Accordingly, the WaveletKernelNet-Convolutional Block Attention Module Net is constructed for noise reduction and fault feature extraction based on signals. The Convolutional Block Attention Module embedded in WaveletKernelNet-CBAM adjusts the weight and enhances the feature representation of channel and spatial dimension. Finally, the Bidirectional Long-Short Term Memory concept is introduced to enhance the ability of the model to process time series data. Upon constructing the network, a Bayesian optimization algorithm is utilized to ascertain and fine-tune the ideal hyperparameters, thereby ensuring the network reaches its optimal performance level. With the hybrid deep learning model presented, an accurate fault diagnosis of a real five-cylinder drilling pump is carried out and the results confirmed its applicability and reliability. Two sets of comparative experiments validated the superiority of the proposed method. Additionally, the generalizability of the model is verified through domain adaptation experiments. The proposed method contributes to the safe production of the oil and gas sector by providing accurate and robust fault diagnosis of industrial equipment.

Keywords: Drilling pump; Fault diagnosis; WaveletKernelNet-CBAM net; Bidirectional long-short term memory (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924011565
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011565

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123773

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011565