Performance and energy utilization analysis of transcritical CO2 two-phase ejector considering non-equilibrium phase changes
Hongbing Ding,
Yuanyuan Dong,
Yan Yang and
Chuang Wen
Applied Energy, 2024, vol. 372, issue C, No S0306261924011930
Abstract:
The use of ejectors in transcritical CO2 refrigeration systems is of key significance for improving system performance, and the investigation of ejectors is particularly important. In this paper, a CO2 two-phase numerical model considering non-equilibrium phase change is established to investigate the two-phase flow characteristics and entrainment performance in the ejector under different operating conditions. In particular, this study is devoted to the trade-off analysis of internal mass transfer and energy utilization efficiency. After a series of tests, the accuracy of the numerical model has been validated, and with the increase of primary inlet pressure, the entrainment performance first increases and then decreases, while the entrainment performance is greatly improved with the increase of primary temperature. There is a critical back pressure, beyond which the entrainment performance drops rapidly. If the pressure reaches 8.46 MPa and the corresponding temperature is set at 303.7 K, the efficiency of the ejector is 27%. When the temperature rises to 313 K, the efficiency increases to 31%, and the ratio of exergy destruction decreases from 48.3% to 10.2%. However, when the back pressure drops to 4.0 MPa, the working efficiency is only 1.8%, which fails to work normally. Effectively balancing the inlet conditions with energy utilization is a key strategy for optimizing ejector use.
Keywords: Transcritical CO2 ejector; Two-phase flow; Phase change; Entrainment performance; Energy loss; refrigeration (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924011930
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011930
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123810
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().