EconPapers    
Economics at your fingertips  
 

A data-driven solution for intelligent power allocation of connected hybrid electric vehicles inspired by offline deep reinforcement learning in V2X scenario

Zegong Niu and Hongwen He

Applied Energy, 2024, vol. 372, issue C, No S0306261924012443

Abstract: The proper power allocation between multiple energy sources is crucial for hybrid electric vehicles to guarantee energy economy. As a data-driven technique, offline deep reinforcement learning (DRL) solely exploits existing data to train energy management strategy (EMS), which becomes a promising solution for intelligent power allocation. However, current offline DRL-based strategies put high demands on the quality of datasets, and it is difficult to obtain numerous high-quality samples in practice. Thus, a bootstrapping error accumulation reduction (BEAR)-based strategy is proposed to enhance the energy-saving performance with different kinds of datasets. After that, based on the advanced V2X technology, a data-driven energy management updating framework is proposed to improve both fuel economy and adaptability of EMS via multi-updating. Specifically, the framework deploys multiple V2X-based buses to collect real-time information, and updates the strategy periodically making full use of offline data. The results show that the proposed BEAR-based EMS performs better than state-of-the-art offline EMSs in terms of fuel economy, especially realizing an improvement of 2.25% when training with mixed datasets. It is also validated that the offline EMS with the updating mechanism can reduce energy costs step by step under two different kinds of initial datasets.

Keywords: Energy management; Hybrid electric vehicle; Vehicle-to-everything; Offline deep reinforcement learning; Energy-saving (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924012443
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:372:y:2024:i:c:s0306261924012443

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123861

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924012443