A novel method for long-term power demand prediction using enhanced data decomposition and neural network with integrated uncertainty analysis: A Cuba case study
Manuel Soto Calvo,
Han Soo Lee and
Sylvester William Chisale
Applied Energy, 2024, vol. 372, issue C, No S0306261924012479
Abstract:
This study developed a methodological approach for long-term electricity demand forecasting and applied it to the electricity demand in Cuba, which is crucial for transitioning from a fossil fuel-dependent system to renewable energy sources. The methodology employs enhanced complete ensemble empirical mode decomposition with adaptive noise (ECEEMDAN) applied for obtaining long-term trends from historical electricity usage data decomposition, combined with a long short-term memory (LSTM) deep learning model for prediction. Comprehensive datasets, including historical electricity consumption, economic indicators, and demographic data, are utilized in the analysis. Monte Carlo simulations, then, are integrated to address uncertainties in prediction and explore 50 different scenarios of future electricity demand. The study forecasts varying scenarios for the energy demand of Cuba by 2050, with the extreme low scenario projecting a decrease of up to 7.9% compared to the 2019 level. This research offers a groundbreaking framework specifically designed to aid Cuba's energy sector stakeholders in informed decision-making during this critical energy transition. The adaptability of the methodology makes it applicable for long-term projections in various sectors, offering a reliable tool for global decision makers.
Keywords: Enhanced ensemble empirical mode decomposition (ECEEMDAN); Long short-term memory (LSTM); Monte Carlo simulation; CMIP6; Energy planning and strategy; Energy policy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924012479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:372:y:2024:i:c:s0306261924012479
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123864
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().