A hierarchical framework for minimising emissions in hybrid gas-renewable energy systems under forecast uncertainty
Kiet Tuan Hoang,
Christian Ankerstjerne Thilker,
Brage Rugstad Knudsen and
Lars Struen Imsland
Applied Energy, 2024, vol. 373, issue C, No S0306261924011796
Abstract:
Developing and deploying renewables in existing energy systems are pivotal in Europe’s transition to net-zero emissions. In this transition, gas turbines (GTs) will be central for balancing purposes. However, a significant hurdle in minimising emissions of GTs operating in combination with intermittent renewables arises from the reliance on unreliable meteorological forecasts. Here, we propose a hierarchical framework for decoupling this operational problem into a balancing and emissions minimisation problem. Balancing is ensured with a high-level stochastic balancing filter (SBF) based on data-driven stochastic grey-box models for the uncertain intermittent renewable. The filter utilises probabilistic forecasting and less conservative chance constraints to compute safe bounds, within which a proposed low-level economic predictive controller further minimises emissions of the GTs during operations. As GTs exhibit semi-continuous operating regions, complementarity constraints are utilised to fully exploit each GT’s allowed operational range. The proposed method is validated in simulation for a gas-balanced hybrid renewable system with batteries, three GTs with varying capacities, and a wind farm. Using real historical operational wind data, our simulation shows that the proposed framework balances the energy demand and minimises emissions with up to 4.35% compared with other conventional control strategies in simulation by minimising the GT emissions directly with complementarity constraints in the low-level controller and indirectly with less conservative chance constraints in the high-level filter. The simulations show that the computational cost of the proposed framework is well within requirements for real-time applications. Thus, the proposed operational framework enables increased renewable share in hybrid energy systems with GTs and renewable energy and subsequently contributes to de-carbonising these types of isolated or grid-connected systems onshore and offshore.
Keywords: Stochastic nonlinear model predictive control; Probabilistic forecasting of renewable power production; Data-driven stochastic differential equations; Gas-balanced energy systems with intermittent renewables; Complementarity constraints (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924011796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:373:y:2024:i:c:s0306261924011796
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123796
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().