EconPapers    
Economics at your fingertips  
 

Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space

Yuxiang Guo, Shengli Qu, Chuang Wang, Ziwen Xing and Kaiwen Duan

Applied Energy, 2024, vol. 373, issue C, No S030626192401198X

Abstract: As the scale of data centers continues to expand, the environmental impact of their energy consumption has become a major concern, highlighting the increasing importance of thermal management in data centers. In this study, we address these challenges by adopting the Soft Actor-Critic (SAC) algorithm of reinforcement learning to enhance energy management efficiency. To further improve adaptability to environmental changes and provide a more comprehensive representation of the current state information, we introduce the Dynamic Control Interval SAC (DCI-SAC) structure and combined-value state space. We conducted two groups of simulation experiments to evaluate the performance of SAC and its variants. The first group of experiments showed that in a simulated data center model, SAC achieved energy savings of 32.23%, 9.86%, 10.77%, 6.95%, and 1.83% compared to PID, MPC, DQN, TRPO, and PPO, respectively, demonstrating SAC's superior algorithmic performance. The second group of experiments shows that DCI-SAC with a combined-value state space achieves up to a 6.25% reduction in energy consumption compared to SAC with the same state space. Additionally, it achieves up to a 9.48% reduction in energy consumption to SAC with a final-value state space. These results validate the effectiveness of the DCI-SAC and combined-value state space, showing that both improvements achieve superior energy efficiency and stability in the energy control of liquid-cooled data centers.

Keywords: Data centers; Thermal management; Reinforcement learning; Soft actor-critic; Dynamic control interval; Combined-value state space (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192401198X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:373:y:2024:i:c:s030626192401198x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123815

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401198x