Decentralized intelligent multi-party competitive aggregation framework for electricity prosumers
Xiaoyuan Cheng,
Ruiqiu Yao,
Andrey Postnikov,
Yukun Hu and
Liz Varga
Applied Energy, 2024, vol. 373, issue C, No S0306261924012431
Abstract:
Electricity management systems are experiencing significant challenges due to the increased penetration of distributed energy resources. Electricity flows in distribution networks are transforming from unidirectional to bi-directional form. Consumers are transitioning to prosumers with different characteristics, where they take more active roles in electricity generation and consumption. Aggregators are vital financial intermediary agents in the power system transitions, as they could aggregate energy profiles of prosumers. The market competition between aggregators and interactions between prosumers and aggregators are complex and dynamic, which requires a holistic framework to model the market competition. This paper proposes an intelligent aggregation framework with edge computing, enabling decentralized competition for multiple aggregators and prosumers, which can be solved with a graph-based consensus algorithm. This study mathematically proves the proposed algorithm's convergence guarantee and convergence rate. In addition, the proposed framework is applied to an open-source dataset to demonstrate its applicability. Lastly, a benchmark analysis is conducted to show that the proposed algorithm has better communication complexity than the benchmark algorithms.
Keywords: Intelligent aggregation; Prosumers; Energy transition; Edge computing; Distributed energy resources; Graph-based consensus algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924012431
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012431
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123860
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().