Physically rational data augmentation for energy consumption estimation of electric vehicles
Yifan Ma,
Wei Sun,
Zhoulun Zhao,
Leqi Gu,
Hui Zhang,
Yucheng Jin and
Xinmei Yuan
Applied Energy, 2024, vol. 373, issue C, No S0306261924012546
Abstract:
With the surge of electric vehicles, accurate estimation of their energy consumption becomes increasingly critical. Data-driven models have been widely used for estimating the energy consumption of electric vehicles; however, their applications often face limitations due to inadequate training data, resulting in over-fitting and poor generalizability. In this paper, a physically rational data augmentation approach is proposed to expand the driving trip dataset. By incorporating physical coherence into the augmentation process, new driving trips are synthesized with rational physical context. The effectiveness of the proposed approach is validated by applying it to three data-driven models for estimating the energy consumption of electric vehicles across different validation scenarios. Compared with two baseline data augmentation approaches, our proposed approach demonstrates superior model training performance with less data synthesized. In the best case, the proposed approach achieved a 34% accuracy improvement over the raw data and an 11% improvement over the best-performing baseline. This proposed approach shows considerable promise in facilitating the effective adoption of advanced machine learning algorithms in industrial applications by significantly reducing the data collection requirements.
Keywords: Energy consumption; Data augmentation; Electric vehicle; Driving feature; Machine learning; Trip (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924012546
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012546
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123871
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().