Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles
Baodi Zhang,
Liang Chang,
Teng Teng,
Qifang Chen,
Qiangwei Li,
Yaoguang Cao,
Shichun Yang and
Xin Zhang
Applied Energy, 2024, vol. 373, issue C, No S0306261924012935
Abstract:
Fuel cell hybrid vehicles (FCHVs) are significant for achieving zero carbon emissions. Connected FCHVs can leverage traffic information to collaboratively optimize cruise and power allocation control, enhancing various performance aspects. For urban driving scenarios, this paper introduces a multi-strategy series control architecture for longitudinal cruise and power allocation control in connected FCHVs. However, particle swarm optimization (PSO) algorithms face challenges in high-dimensional decision and objective spaces when optimizing multiple strategies. Additionally, manually preset PSO parameters hinder particle evolution from dynamically adapting to unknown multi-objective spaces, thereby limiting the development of multiple performance metrics. To address this issue, this paper proposes a Q-learning multi-objective PSO (QMOPSO) algorithm. This algorithm tackles high-dimensional optimization challenges by improving population initialization distribution and subpopulation division, and enables particles to dynamically adjust exploration strategies, thereby maximizing multiple objective performances. The results indicate that compared to a control scheme optimized with PSO under predefined driving conditions, the multi-strategy series control framework optimized with the QMOPSO algorithm improves tracking stability by 50.20%, driving comfort by 1.77%, fuel economy by 6.10%, and reduces power source degradation by 2.04% in urban driving scenarios. Compared to PSO and multi-objective PSO algorithms, the QMOPSO algorithm demonstrates superior trade-offs. This research provides a collaborative optimization solution for FCHVs in connected environments.
Keywords: Fuel cell hybrid vehicle; Connected vehicle; Multi-objective optimization; Urban driving scenarios; Q-learning; Particle swarm optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924012935
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012935
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123910
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().