EconPapers    
Economics at your fingertips  
 

Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems

Hanxin Yu, Shanlin Chen, Yinghao Chu, Mengying Li, Yueming Ding, Rongxi Cui and Xin Zhao

Applied Energy, 2024, vol. 374, issue C, No S0306261924013904

Abstract: The emergence of small-scale urban distributed solar generation (DSG) has urged the exploration of site-adaptive forecasting models designed to accurately predict future power outputs for unseen DSGs. In such scenarios, with numerous DSGs spread across utility-scale cities and a lack of historical data, it is not economically viable to use conventional approaches that develop individual models for each DSG. Therefore, this work aims to tackle this real-world challenge by adapting the state-of-the-art, attention-based temporal fusion transformer (TFT) model to 188 real-world operational DSG data, thereby validating the generalizability of self-attention mechanism for multi-step time series forecasting. When adapted to unseen DSGs without training data, the experiment results demonstrate that the proposed solar TFT (STFT) improves by 11.07%, 17.58%, and 22.76% over the persistence model at the 10-, 20-, and 30-minute forecasts, respectively. Even when compared to representative deep-learning models, such as a long short-term memory model specialized in time series forecasting, STFT has demonstrated improved forecast accuracy, achieving 3.34%, 4.18%, and 5.85% enhancements at the 10-, 20-, and 30-minute forecast horizons, respectively. However, the model architecture of STFT is more complex, and the computational cost associated with it is relatively higher compared to other deep learning models. This trade-off between accuracy and computational efficiency should be considered in practical applications. The forecast performance is analyzed in three typical weather conditions, namely, clear, partly cloudy, and overcast. STFT demonstrates advantages in high variability periods, especially during weather transition periods, where reference models experience lagged predictions yielding relatively large errors.

Keywords: Model generalizability; Distributed photovoltaic; Solar forecast; Data-driven models; Attention mechanism (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924013904
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013904

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124007

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013904