A novel ‘3D + digital twin + 3D’ upscaling strategy for predicting the detailed multi-physics distributions in a commercial-size proton exchange membrane fuel cell stack
Fan Bai,
Zhiyi Tang,
Ren-Jie Yin,
Hong-Bing Quan,
Lei Chen,
David Dai and
Wen-Quan Tao
Applied Energy, 2024, vol. 374, issue C, No S0306261924013953
Abstract:
With the rapid development of proton exchange membrane fuel cell (PEMFC) commercialization, a comprehensive knowledge of multi-physics fields in large-scale PEMFC stacks has become ever more critical. Although conventional three-dimensional computational fluid dynamic (CFD) models have achieved great success, the application in the commercial-size stack-scale simulation remains inapplicable due to enormous computational resource requirements. Herein, based on the latest 3D CFD model, multi-physics digital twin (DT) technology and 3D stack flow distribution prediction model, a novel multi-scale upscaling prediction model is proposed. The voltage, water and thermal management characteristics of a 164-cell PEMFC stack with an active electrode area of 292.5 cm2 are studied and analyzed in details. For the analysis of commercial-size PEMFC stacks, the most comprehensive multi-physics fields are covered in this paper to date. And the results suggest that by introducing the DT technology, the time requirement of the multi-physics field prediction for unit scale prediction can be reduced by hundreds of thousands of times with a maximum global relative deviation of 1% under 10 groups of random test conditions, giving a solution from the cell scale to stack scale performance prediction, design, heat and thermal management in the PEMFC research and application.
Keywords: Proton exchange membrane fuel cell stack; Commercial-size; 3D detailed multi-physics distribution simulation; Multi-scale method; Upscaling strategy; Digital twin (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924013953
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013953
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124012
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().