EconPapers    
Economics at your fingertips  
 

Multi-time scales prediction of aggregated schedulable capacity of electric vehicle fleets based on enhanced Prophet-LGBM algorithm

Yangyang Wang, Meiqin Mao and Liuchen Chang

Applied Energy, 2024, vol. 374, issue C, No S0306261924014016

Abstract: The fast-increasing applications of renewable energy and electric vehicles (EVs) pose significant challenges to the safe and economic operation of the power grid. However, through Virtual Power Plant (VPP) technology, EV fleets can be aggregated into large-scale EV generalized energy storage systems, providing scarce dispatchable flexible resources for the future power system. Rapid and accurate prediction of the Aggregated Schedulable Capacity of EV (EVASC) fleets is a crucial technology for VPP with Electric Vehicles (EV-VPP) to participate in various ancillary services of the power system. In this paper, orienting for various dispatch scenarios in the power system, a multi-time scale prediction model of the EVASC for EV-VPPs is presented based on the enhanced Prophet algorithm combining a light gradient boosting machine (LGBM) algorithm. The enhanced Prophet-LGBM algorithm is initially proposed here by incorporating the LGBM algorithm into the traditional Prophet algorithm in series and adding extra sequential features in its input, such as temperature, weather, and alike. In this way, the problem of overfitting and low capability in addressing additional input features in the traditional Prophet is overcome. The proposed enhanced Prophet-LGBM-based prediction method of the EVASC for EV-VPPs is validated using 1.8 million actual charging records of over 4000 charging piles for half a year at the provincial level. The 30-day simulation results of the day ahead and intraday predictions of the EVASC for EV-VPPs show that much higher performances in the prediction accuracy can be achieved, specifically in holidays.

Keywords: Electric vehicles; Virtual power plant; Prediction of the aggregated schedulable capacity; Enhanced Prophet-LGBM (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924014016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014016

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124018

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014016