Size effect on the thermal and mechanical performance of cylindrical lithium-ion batteries
Jin Liu,
Chunguang Chen,
Jici Wen,
Zhenghua Chang,
Peter H.L. Notten and
Yujie Wei
Applied Energy, 2024, vol. 375, issue C, No S0306261924014399
Abstract:
Increasing the size of cylindrical lithium-ion batteries (LIBs) to achieve higher energy densities and faster charging represents one effective tactics in nowadays battery society. A systematic understanding on the size effect of energy density, thermal and mechanical performance of cylindrical LIBs is of compelling need. Taking the diameter D and height H of cylindrical LIBs as variables, we shed light on the energy densities, thermal and mechanical performance of cylindrical LIBs. The volumetric energy density increases with D, while the gravimetric energy density first increases with D, peaks at a certain diameter before dropping with further increasing D. The thermal performance of cylindrical LIBs could be better characterized by the diameter-to-height ratio: cells of identical capacity but with greater D/H show lower temperature rise and lower thermal gradient at high cycling rates. Mechanically, LIBs of greater D are prone to buckling on the jellyroll close to core, and may fracture under tension on outer jellyroll near the cell case. Those findings suggest the necessity to optimize D and H of cylindrical LIBs insomuch as the trade-offs between the thermal and mechanical performance.
Keywords: Cylindrical lithium-ion battery; Thermal-mechanical performance; Energy density; Size effect; Optimal design (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924014399
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014399
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124056
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().